El componente social de la amenaza híbrida y su detección con modelos bayesianos
Resumen
Las sociedades contemporáneas están cada vez más condicionadas por el desarrollo de la tecnología informática. Esa tendencia deja entrever un panorama en el que cada ser humano se identifica por el binomio persona-computadora, mientras que la mayor informatización de la vida civil está generando ingentes cantidades de datos que son susceptibles de ser gestionados con fines bélicos. El objetivo de este artículo es abordar la utilidad potencial de las redes bayesianas como herramientas destinadas a la monitorización y detección temprana de ataques híbridos de carácter social a escala global. Como conclusión, planteamos que el uso de la inferencia y las redes bayesianas es útil para monitorear, detectar y supervisar el componente social de las amenazas híbridas a escala global por medio del análisis de las redes sociales.
Abstract
Contemporary societies are increasingly conditioned by the development of computer technology. This trend suggests a picture in which each human being is identified by the person-computer binomial while greater computerization of civil life is generating huge amounts of data that are likely to be managed for war purposes. The objective of this article is to address the potential utility of Bayesian networks aimed at monitoring and early detection of hybrid attacks of a global nature. We conclude that the use of inference and Bayesian networks is useful for monitoring, detection and supervision of the social component of hybrid threats globally through social network analysis.
Descargas
Citas
Alonso, Diego, y Elisabet Tubau. 2002. “Inferencias bayesianas: una revisión”. Anuario de Psicología 33: 25–47.
Anscombe, Francis John. 1961. “Bayesian statistics”. The American Statistician 15: 21-24. dx.doi.org/10.2307/2682504
Anwar, Amaan, y Syed Imtiyaz Hassan. 2017. “Applying Artificial Intelligence Techniques to Prevent Cyber Assaults”. International Journal of Computational Intelligence Research 13:883-889.
Bayes, Thomas. 1763. “An essay towards solving a problem in the doctrine of chances”. Philosophical Transactions 53, 370-418. dx.doi.org/10.1098/rstl.1763.0053
Berger, Peter Ludwig, y Thomas Luckmann. 1968. La construcción social de la realidad. Buenos Aires: Amorrortu.
Bolstad, William. 2007. Introduction to Bayesian Statistics. Hoboken: Wiley.
Butler, Declan. 2016. “A World Where Everyone Has a Robot: Why 2040 Could Blow Your Mind”. Nature 530: 398-401. dx.doi.org/10.1038/530398a
Castelvecchi, Davide. 2019. “Machine Learning Comes Up Against Unsolvable Problem”. Nature 565: 277. doi.org/10.1038/d41586-019-00083-3
CIA (Central Intelligence Agency). 1968. “Bayes' theorem in the Korean war”. Intelligence Report No. 0605/68, Directorate of Intelligence.
Cloud Security Alliance. 2012. “Top ten big data security and privacy challenges”, https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Big_Data_Top_Ten_v1.pdf
Colom, Guillem. 2019. “La amenaza híbrida: mitos, leyendas y realidades”. Instituto Español de Estudios Estratégicos 24. http://www.ieee.es/Galerias/fichero/docs_opinion/2019/DIEEEO24_2019GUICOL-hibrida.pdf
Cowell, Robert, Philip Dawid, Steffen Lauritzen, y David Spiegelhalter. 1999. Probabilistic networks and expert systems. Harrisonburg: Springer.
Das, Balaram. 1999. Representing uncertainties using bayesian networks. Australia: Department of Defence/Defence Science and Technology Organization.
Dixon, John. 1970. Introducción a la probabilidad. Texto programado. México: Limusa-Wilely.
Ducaru, Sorin Dumitru. 2016. “The Cyber Dimension of Modern Hybrid Warfare and Its Relevance for NATO”. Europolity 10: 7-23.
Edwards, Ward, y Barbara Fasolo. 2001. “Decision Technology”. Annual Review of Psychology 52: 581-606.
Fisk, Charles. 1994. “The sino-soviet border dispute: a comparison of the conventional and Bayesian methods for intelligence warning”, https://www.cia.gov/library
Garbolino, Paolo, y Franco Taroni. 2002. “Evaluation of Scientific Evidence Using Bayesian Networks”. Forensic Science International 125: 149-155.
Glymour, Clark. 2001. The Mind’s Arrows. Bayes Nets and Graphical Causal Models in Psychology. Cambridge: MIT Press.
Glymour, Clark. 2003. “Learning, prediction and causal Bayes nets”. Trends in Cognitives Sciences 7: 43–48.
Gopnik, Alison, Glymour, Clark, Sobel, David, Schulz, Laura, Kushnir, Tamar, y Danks, David. 2004. “A Theory of Causal Learning in Children: Causal and Bayes Nets”. Psychological Review 111: 3–32.
Gopnik, Alison, y Laura Schulz. 2004. “Mechanisms of Theory Formation in Young Children”. Trends in Cognitives Sciences 8: 371–377.
Gopnik, Alison, David Sobel, Laura Schulz, y Clark Glymour. 2001. “Causal Learning Mechanisms in Very Young Children: Two, Three, and Four-Years-Olds Infer Causal Relations from Patterns of Variation and Covariation”. Developmental Psychology 37: 620–629.
Grinberg, Nir, Kenneth Joseph, Lisa Friedland, Briony Swire-Thompson, y David Lazer. 2019. “Fake News On Twitter During The 2016 U.S. Presidential Election”. Science 363: 374-378. 10.1126/science.aau2706
Heckerman, David. 1995. A Tutorial On Learning with Bayesian. Redmon: Microsoft Research.
Held, Leonhard, y Manuela Ott. 2018. “On P-values and Bayes Factors”. Annual Review of Statistics and its Application 5: 393-419. dx.doi.org/10.1146/annurev-statistics-031017-100307
Hoffman, Frank. 2009. “Hybrid Warfare and Challenges”. Joint Force Quarterly 52: 34-39.
Hoijtink, Herbert, Pascal van Kooten, y Hulsker, Koenraad. 2016. “Bayes Factors Have Frequency Properties-This Should Not Be Ignored: A Rejoinder to Morey, Wagenmakers, and Rouder”. Multivariate Behavioral Research 51: 20-22. 10.1080/00273171.2015.1071705
Jarosz, Andrew, y Jennifer Wiley. 2014. “What Are the Odds? A Practical Guide to Computing and Reporting Bayes Factors”. Journal of Problem Solving 7: 2-9. dx.doi.org/10.7771/1932-6246.1167
Jeffreys, Harold. 1931. Scientific Inference. Cambridge: Cambridge University Press.
Jeffreys, Harold. 1948. Theory of Probability. Oxford: Oxford University Press.
Jeon, Minjeong, y Paul De Boeck. 2017. “Decision Qualities of Bayes Factor and P Value-Based Hypothesis Testing”. Psychological Methods 22:340-360. dx.doi.org/10.1037/met0000140
Kass, Robert, y Adrian Raftery. 1995. “Bayes Factors”. Journal of the American Statistical Association 90: 773-795. dx.doi.org/10.1080/01621459.1995.10476572
Lafuente, Guillermo. 2015. “The Big Data Security Challenge”. Network Security 2015: 12-14. 10.1016/S1353-4858(15)70009-7
Lanoszka, Alexander. 2016. “Russian Hybrid Warfare and Extended Deterrence in Eastern Europe”. International Affairs 92: 175-195.
Lilienfeld, Scott, Steven Jay Lynn, Laura Namy, y Nancy Woolf. 2011. Psicología. Una introducción. Madrid: Pearson.
López, Jorge. 2012. “Cómo construir y validar redes bayesianas con Netica”. Revista Electrónica de Metodología Aplicada 17: 1-17.
Morey, Richard, y Jeffrey Rouder. 2011. “Bayes Factor Approaches for Testing Interval Null Hypothesis”. Psychological Methods 16: 406-419. dx.doi.org/10.1037/a0024377
Morey, Richard Donald, Eric-Jan Wagenmakers, y Jeffrey Rouder. 2016. “Calibrated Bayes Factors Should Not Be Used: A reply to Hoijtink, van Kooten, and Hulsker”. Multivariate Behavioral Research 51: 11-19. dx.doi.org/10.1080/00273171.2015.1052710
Oatley, Giles, y Brian Ewart. 2003. “Crimes Analysis Software: ‘Pins in Maps’, Clustering and Bayes Net Prediction”. Expert Systems with Applications 25: 569-588.
O’Hagan, Anthony, y Bryan Luce. 2003. A premier on Bayesian statistics in health economics and outcome research. Sheffield: MEDTAP International.
Puga, Jorge, Krzywinski, Martin, y Naomi Altman. 2015. “Points of Significance: Bayesian statistics”. Nature Methods 12: 377-378. doi.org/10.1038/nmeth.3368
Rebolloso, Enrique. 1994. “Conducta colectiva y movimientos colectivos”. En Psicología social, coordinado por José Francisco Morales, 763-800. Madrid: McGraw Hill.
Ríos, David, Jesús Ríos, y David Banks. 2012. “Adversarial Risk Analysis”. Journal of the American Journal Association 104:841-854. dx.doi.org/10.1198/jasa.2009.0155
Ruiz-Ruano, Ana María. 2015. “Aprendizaje estructural de redes bayesianas para modelar el emprendimiento académico de base sostenible y tecnológica”. Tesis doctoral, Facultad de Ciencias de la Salud, Universidad Católica San Antonio de Murcia. http://hdl.handle.net/10952/1556
Ruiz-Ruano, Ana María, y Jorge Puga. 2018. “Seguridad informática e inteligencia artificial en la era de la información masiva”. En Conflictos y diplomacia, desarrollo y paz, colaboración y medio ambiente, dirigido por César Augusto Giner y Juan José Delgado, 711-724. Navarra: Aranzadi.
Scutari, Marco. 2010. “Learning Bayesian Networks with the bnlearn R Package”. Journal of Statistical Software 35 (3): 1-22. dx.doi.org/10.18637/jss.v035.i03
Serrano, José. 2003. Iniciación a la estadística bayesiana. Madrid: Muralla/Hespérides.
Sobel, David, Joshua Tenenbaum, y Alison Gopnik. 2004. “Children’s Causal Inferences from Indirect Evidence: Backwards Blocking and Bayesian Reasoning in Pre-Schoolers”. Cognitive Science 28: 303–333.
Somiedo, Juan Pablo. 2018. “El análisis bayesiano como piedra angular de la inteligencia de alertas estratégicas”. Revista de Estudios en Seguridad Internacional 4 (1): 161-176. doi.org/10.18847/1.7.10
Taddeo, Mariarosaria, Luciano y Floridi. 2018. “Regulate Artificial Intelligence to Avert Cyber Arms Race”. Nature 556: 296-298. doi.org/10.1038/d41586-018-04602-6
Von Solms, Rossouw, y Johan van Niekerk. 2013. “From Information Security to Cyber Security”. Computers and Security 38: 97-102. doi.org/10.1016/j.cose.2013.04.004
Derechos de autor 2019 URVIO. Revista Latinoamericana de Estudios de Seguridad
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.
Urvio, Revista Latinoamericana de Estudios de Seguridad opera bajo licencia Creative Commons Reconocimiento-Sin Obra Derivada 3.0 Unported (CC BY-ND 3.0).
Los autores/as que publiquen en Urvio aceptan estos términos:
Usted es libre de compartir — copiar y redistribuir el material en cualquier medio o formato para cualquier finalidad, incluso comercial. Por tanto, autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación (CC BY-ND 3.0), que permite a terceros la redistribución, comercial o no comercial, de lo publicado siempre y cuando el artículo circule sin cambios.
Existen las siguientes condiciones para los autores:
Reconocimiento — Debe reconocer la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
Sin Obra Derivada — Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.
Para más detalles, visitar la página de Creative Commons (CC).